
J. Ma et al. (Eds.): UIC 2006, LNCS 4159, pp. 977 – 987, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Secure and Auto-configurable Environment for Mobile 
Agents in Ubiquitous Computing Scenarios* 

Javier López, Antonio Maña, and Antonio Muñoz  

GISUM group, Computer Science Department, E.T.S.I. Informática 
University of Malaga, Spain  

{jlm, amg, amunoz}@lcc.uma.es 

Abstract. The increased heterogeneity and dynamism of new computing 
paradigms and especially of ubiquitous computing models is boosting the need 
for auto-configurable systems. In these new scenarios, heterogeneity and 
dynamism are inherent properties and applications are built by aggregating 
distributed information and services that are not under the control of a single 
entity. The current trend towards distributed computing poses important 
problems related to the transmission of large amounts of data between the nodes 
of the computing system; the control over the information; and the flexibility to 
adapt to heterogeneous client requirements. These characteristics, difficult to 
manage by traditional computing models, are making the mobile agent 
paradigm to gain momentum and increasing the interest of researchers and 
industry in this paradigm. In this paper we present a solution to provide a secure 
and auto-configurable environment for mobile agents in ubiquitous computing 
scenarios, based on two main building blocks: trusted platforms and profiles.  

Keywords: Security, Agents, Profiles, Trusted Computing, Ubiquitous 
computing. 

1   Introduction 

Personalization and ubiquity are key properties for on-line services, but at the same 
time, they challenge the development of these systems because of the complexity of 
the required architectures and the security concerns they introduce. In particular, the 
current infrastructures for the development of personalized ubiquitous services are not 
flexible enough to accommodate the configuration requirements of the various 
application domains. To address such issues, highly configurable infrastructures are 
needed. An intimate relationship exists between auto-configurable systems and 
ubiquitous environments due to the nature of these environments, in which a device 
interacts with the context and adapts itself to it, performing auto-configuration.  

In these new scenarios, heterogeneity and dynamism are inherent properties and 
applications are built by aggregating distributed information and services that are not 
under the control of a single entity. Furthermore, the current trend towards distributed 

                                                           
*  Work partially supported by E.U. through projects Ubisec (IST-506926) and SERENITY 

(IST-027587) and by Spanish Ministry of Science and Education through research grant 
PR2005-0175. 



978 J. López, A. Maña, and A. Muñoz 

computing poses important problems related to the need to transmit large amounts of 
data between the distributed nodes of the computing system; the control over the 
information; and the flexibility to adapt to heterogeneous client requirements. These 
characteristics are difficult to manage by traditional computing models. For these 
reasons, the mobile agent paradigm is gaining momentum and the interest of 
researchers and industry in this paradigm is increasing. 

The mobile agent paradigm uses the network to carry software objects that are to 
be executed in the sites of service providers. A client orchestrates the work of a server 
by sending to the server an agent that is responsible for performing all of the required 
actions related to the services and data offered by the server. For instance, consider 
the case of a digital library server offering several Tb. of information. In order to 
allow the remote processing of this information we can find different schemes:  

– The server offers only basic services in order to access the data. In this case 
clients need to download the data and to process it locally. This is the scheme 
of many traditional client-server systems. This scheme reduces the processing 
power required in the server, but has three main drawbacks: (i) the system is 
very inefficient due to the overhead caused by data transmission and redundant 
storage; (ii) the server looses control over the information; and (iii) in cases of 
very dynamic information sources, the transmission delays can cause problems 
of synchronization between the copies of the data in the client and the server. 
This is especially true when clients can modify the data because, in this case, 
there are important problems caused by concurrent access by many clients. 

– The server offers advanced information processing services. This scheme 
solves the problem of data transmission and redundancy, as the data is 
processed locally by the server. However, the flexibility of the system is 
limited, because it is very difficult for the server to foresee all processed that 
may become necessary for the clients. The main problems arise when clients 
need to access many heterogeneous information servers, because it is difficult 
that all servers offer the same services with the same access mechanisms. This 
is the approach followed in service-oriented computing. Clients need to 
download only the partial results produced by the server, in order to compute 
locally the final results. For this reason, the control of the server has more over 
the information than the previous case, although not complete. 

– The server offers the possibility of sending agents to perform the data 
processing. In this case, the server offers only basic access services, which are 
easier to manage from the points of view of efficiency and security. The 
flexibility is very good because agents are then responsible for implementing 
the complex data processing required by the client. Only results need to be 
sent to the client. The control of the server over the information is complete. 

The agent paradigm can represent a valuable model for the interaction of 
applications and devices in ubiquitous environments. Each element in the ubiquitous 
scenario can act both as client (sending agents to other elements) and as server 
(allowing other elements to send agents to it).  

The main motivation of our work is to define a secure and adaptable execution 
environment for mobile agents based on the use of profiles and taking advantage of 
the new Trusted Computing architectures. We define a profile as a repository 



 A Secure and Auto-configurable Environment 979 

materialized as a structured data object, containing properties and features, as well as 
present and past status about an entity, in our case an agent. Profiles are normally 
used to convey the properties of an entity to other entities, not being intended as 
information storage for internal use by the entity itself. Therefore, profiles are 
conceived with the objective of being shared with others. Our approach includes 
mechanisms for the secure management of profiles, which are key elements for the 
auto-configuration of the hosts for the execution of the mobile agents. 

We use mechanisms for guaranteeing that execution environments (a.k.a. agencies) 
provided by the hosts are trustworthy. This is achieved by using the mechanisms 
provided by hardware devices known as Trusted Platform Modules (TPMs). TPMs 
are the core elements of the secure computing model defined by the Trusted 
Computing Group (TCG) [1]. We also use the remote attestation capability provided 
by the TCG model. In the combination of these two central elements, we highlight the 
intrinsic auto-configurability of agent systems and we enhance it by using profiles. 

The rest of the paper is structured as follows. Section 2 provides an overview of 
relevant related work. Section 3 describes the proposed solutions for achieving our 
objectives. Finally, section 4 presents conclusions and describes some ongoing work. 

2   Background and Related Work 

The growing interest in ubiquity, dynamic adaptability, profiling and auto-
configuration is evident in the literature [2-5]. In the emerging computing paradigms, 
this interest is augmented by the need to provide dynamic autonomous responses to 
ever-changing contexts and unforeseen interactions. 

Profiles have been used for capturing information about users and preferences. 
Some authors describe profiling as “the process of inferring a set of characteristics 
(typically behavioural) about an entity and then treating that entity (or other entities) 
in the light of these characteristics” [6]. Based on this definition Pearson describes a 
method based on the use of trusted agents for self-profiling in e-commerce scenarios 
by which customers can have greater control over their related profiles [7]. However, 
the objective of our profiles is to inform agencies about the needs of the agents and at 
the same time to provide tools for agencies to control and monitor the behaviour of 
agents. The real value of profiles depends on the accuracy of the information they 
contain. Therefore, the protection of these profiles is an important aspect to consider. 

Regarding the processing and description of profiles, RDF [8] provides a way to 
define a generic data model so facilitating a multi purpose mechanism to describe 
resources. Another approach, CC/PP [9] proposes a framework for the management of 
information about devices capabilities and user preferences. This framework, based 
on the RDF approach, has proved useful for content customization. UAProf [10] 
provides a solution to define a specific vocabulary concerning device information. 
Finally, FIPA [11] defines device ontologies for the communication of devices.  

Many proposals use profiles to characterize users’ behaviour while they browse 
through the Internet [12]. The information obtained is used to construct a transient 
navigation profile, which is useful to anticipate future actions of the user. Reference 
[13] follows the same approach, using Bayesian networks as a tool for creating 
profiles of visitors in a museum in order to customize the information. 



980 J. López, A. Maña, and A. Muñoz 

2.1   Security in Agent-Based Systems 

The inherent complexity of information security is increased in agent-based 
ubiquitous systems. In fact, securing these systems requires protecting any element 
from every other. Some of the general software protection mechanisms can be applied 
to the protection of agents. However, the specific characteristics of agents mandate 
the use of tailored solutions. First, agents are most frequently executed in potentially 
malicious platforms. Then, from the point of view of platforms, agents are potentially 
malicious pieces of software. Therefore, we can not simplify the problem as is done in 
other scenarios by assuming that some elements of the system can be trusted. 

Then, the security of an agent system can be defined in terms of many different 
properties such as confidentiality, non repudiation, etc. but it always depends on 
ensuring the correct execution of the agent on agent servers (a.k.a. agencies) within 
the context of the global environments provided by the servers [14].  

Finally, conflict management, communication, intelligence and negotiation are 
important components of collaborative multi-agent activity. Thus, a collaborative 
agent must be able to handle situations in which conflicts arise and must be capable of 
negotiating with other agents in order to fulfil its goals. These capabilities are 
especially relevant for the security of the agent. 

Several mechanisms for secure execution of agents have been proposed in the 
literature with the objective of securing the execution of agents. Most of these 
mechanisms are designed to provide some type of protection or some specific security 
property. In this section we will focus on solutions that are specifically tailored or 
especially well-suited for agent scenarios. More extensive reviews of the state of the 
art in general issues of software protection can be found in [15, 16]. 

Some protection mechanisms are oriented to the protection of the host system 
against malicious agents. Among these, SandBoxing is a popular technique that is 
based on the creation of a secure execution environment for non trusted software. In 
the agent world a sandbox is a container that limits, or reduces, the level of access its 
agents have and provides mechanisms to control the interaction among them.  

Another technique, called proof-carrying code, is a general mechanism for 
verifying that the agent code can be executed in the host system in a secure way [17]. 
For this purpose, every code fragment includes a detailed proof that can be used to 
determine whether the security policy of the host is satisfied by the agent. Therefore, 
hosts just need to verify that the proof is correct (i.e. it corresponds to the code) and 
that it is compatible with the local security policy. In a variant of this technique, 
called proof-referencing code, the agents do not contain the proof, but just a reference 
to it [18]. These techniques share some similarities with the constraint programming 
technique; they are based on explicitly declaring what operations the software can or 
can not perform. One of the most important problems of these techniques is the 
difficulty of identifying which operations (or sequences of them) can be permitted 
without compromising the local security policy.  

Other mechanisms are oriented towards protecting agents against malicious 
servers. Sanctuaries [19] are execution environments where a mobile agent can be 
securely executed. Most of these proposals are built with the assumption that the 
platform where the sanctuary is implemented is secure. Unfortunately, this 
assumption is not applicable in our scenario. Several techniques can be applied to an 



 A Secure and Auto-configurable Environment 981 

agent in order to verify self-integrity in order to avoid that the code or the data of the 
agent is inadvertently manipulated. Anti-tamper techniques, such as encryption, 
checksumming, anti-debugging, anti-emulation and some others [20, 21] share the 
same goal, but they are also oriented towards the prevention of the analysis of the 
function that the agent implements. Additionally, some protection schemes are based 
on self-modifying code, and code obfuscation [22]. In agent systems, these techniques 
exploit the reduced execution time of the agent in each platform.  

Software watermarking techniques [23, 16] are also interesting. In this case the 
purpose of protection is not to avoid the analysis or modification but to enable the 
detection of such modification. The relation between all these techniques is strong. In 
fact, it has been demonstrated that neither perfect obfuscation nor perfect watermark 
exists [24]. All of these techniques provide short-term protection; therefore, in general 
they are not applicable for our purposes. However, in some scenarios, they can 
represent a suitable solution, especially, when combined with other approaches. 

Many proposals are based on checks. In these systems the software includes 
software and hardware-based “checks” to test whether certain conditions are met. 
However, because the validation function is included in the software, it can be 
discovered using reverse engineering and other techniques. This is particularly 
relevant in the case of agents. Theoretic approaches to the problem have demonstrated 
that self-protection of the software is unfeasible [25]. 

In some scenarios, the protection required is limited to some parts of the software 
(code or data). In this way, the function performed by the software, or the data 
processed, must be hidden from the host where the software is running. Some of these 
techniques require an external offline processing step in order to obtain the desired 
results. Among these schemes, function hiding techniques allow the evaluation of 
encrypted functions [26]. This technique protects the data processed and the function 
performed. For this reason it is an appropriate technique for protecting agents. 
However, it can only be applied to the protection of polynomial functions. 

The case of online collaboration schemes is also interesting. In these schemes, part 
of the functionality of the software is executed in one or more external computers. 
The security of this approach depends on the impossibility for each part to identify the 
function performed by the others. This approach is very appropriate for distributed 
computing architectures such as agent-based systems or grid computing, but has the 
important disadvantage of the impossibility of its application to off-line environments 

Finally there are techniques that create a two-way protection. Some of these are 
hardware-based, such as the Trusted Computing Platform. With the recent appearance 
of ubiquitous computing, the need for a secure platform has become more evident. 
Therefore, this approach adds a trusted component to the computing platform, usually 
built-in hardware used to create a foundation of trust for software processes [27].  

3   Secure Execution of Agents in Ubiquitous Computing Scenarios 

The main goal of this paper is to provide a secure and auto-configurable environment 
for mobile agents in ubiquitous computing scenarios. In order to achieve this goal we 
will base our approach on two main building blocks: trusted platforms and profiles. 



982 J. López, A. Maña, and A. Muñoz 

On the one hand, in order to enhance the security of the execution environment our 
approach uses the concept of Trusted Platform. Because we are focusing on 
ubiquitous scenarios where we consider every device to be able to act as agency, and 
where the interaction with other previously unknown devices and applications will be 
the frequent, the security must be based on mechanisms that allow one party to verify 
the trustworthiness of the others. The idea behind the Trusted Computing paradigm 
was introduced in 1997 by Arbaugh, Farber and Smith [28]. The technology currently 
known as Trusted Computing has been developed by the Trusted Computing Group 
(TCG) on the basis of the specifications developed by the Trusted Computing 
Platform Alliance (TCPA). According to the TCG documentation, “the distinguishing 
feature of TCG technology is arguably the incorporation of ‘roots of trust’ into 
computer platforms.” The TCG technology is not only for personal computers. In fact, 
it can be applied to most computing devices, such as PDAs, mobile phones, etc. The 
basic idea in our approach is to use the services provided by the TCG architecture in 
order to allow agents to verify that the agencies where they will be executed are 
trustworthy. In particular, we will check that the agencies run on top of trusted 
hardware and software configurations and that they have not been tampered with.  

On the other hand, in order to facilitate auto configuration of the agencies, we will 
use secure profiles (i) for informing the agencies about the security requirements of 
the agents; (ii) for facilitating auto-configuration of the agency; and (iii) for 
supporting advanced monitoring of the behaviour of the agent. 

3.1   Trusted Computing Support 

The basic idea behind the concept of Trusted Computing is the creation of a chain of 
trust between all elements in the computing system, starting from the most basic ones. 
Therefore, the chain starts with a tamperproof hardware device, known as Trusted 
Platform Module (TPM), which analyses the BIOS of the computer and, in case it is 
recognized as trusted, passes control to it. This process is repeated for the master boot 
record, the OS loader, the OS, the hardware devices and finally the applications. This 
process can be tailored to suit the boot sequences of other devices such as routers, 
PDAs, mobile phones, etc. In Trusted Computing scenarios trusted applications run 
exclusively on top of protected and pre-approved supporting software and hardware. 

One of the features of the Trusted Computing model is that it makes possible for 
both the platform owner and arbitrary third parties to obtain evidence about the 
integrity and configuration of a platform by measuring the platform components and 
comparing such measures to predefined values. The TPM component of the TCG 
architecture can also securely store secrets such as cryptographic keys and platform 
configuration measures in special shielded memory locations known as Platform 
Configuration Registers (PCRs). Additionally, TPMs can perform security relevant 
operations such as encryption and production of digital signatures. The process of 
obtaining metrics of those platform characteristics that affect its security and 
dependability; and storing and putting digests of those metrics in shielded locations is 
known as integrity measurement. Integrity reporting is the process of attesting to the 
contents of integrity storage. This is done by digitally signing specific internal TPM 
data using an Attestation Identity Key (AIK). These features are designed to allow 
platforms to enter any state, including those not identified as secure, but to prevent 



 A Secure and Auto-configurable Environment 983 

that a platform can lie about states that is was or was not in. An independent process 
may evaluate the integrity state(s) and determine appropriate responses.  

Remote attestation is another interesting feature. In the typical scenario where 
Alice and Bob are communicating, Alice can take advantage of the remote attestation 
feature in order to determine whether the current configuration of Bob’s platform is 
safe. This is possible for Alice because the Trusted Computing technology provides 
mechanisms for her to measure (obtain a cryptographic hash) of the configuration of 
Bob’s platform. If this configuration is altered or modified, a new hash value must be 
generated and sent to Alice in a certificate. These certificates attest the current state of 
Bob’s platform and allow her to accept or reject the communication.  

In particular, in our scenario we use this remote attestation mechanism between the 
TPMs of the platforms where each agency runs in order to verify that the agency 
software has not been tampered with and that it is running over appropriate software, 
firmware, and hardware configurations. The agency where the agent is currently 
running (source agency) is responsible for using remote attestation procedures in 
order to verify that the next agency in the agent itinerary (destination agency) is also 
trustworthy. In this way, assuming that the agent is started in a trusted agency (the 
home agency), we can be sure that the agent runs only on trusted agencies. Attestation 
is carried out by the TPM of the source agency in order to ensure that destination 
agencies provide secure and dependable execution environments for the agent. 

Fig. 1 shows an interaction diagram that illustrates how the verification of the 
destination agency is done with the help of the TPMs of both agencies. For the sake of 
simplicity we include only two agencies. It is straightforward to extend this process 
for multiple agencies in the case of multi-hop agents. The process starts when the 
source agency (A1) receives from an agent (ag1) a request to verify the configuration 
of the destination agency (A2) according to some requirements (A2req). This explicit 
notification is necessary because the verification is done by the source agency with 
the help of the local TPM (tpm1). There are some cases in which agents can carry out 
this process without the intervention of the source agency. However, this second 
alternative requires the agents to be able to access the services of the local TPM 
directly, which is not likely to be allowed. 

Then, the source agency TPM uses the remote attestation mechanism in order to 
obtain the configuration of the destination agency (A2conf). This process requires the 
collaboration of the destination agency TPM (tpm2). If the required configuration is 
successfully verified, the agent can safely migrate to the destination agency. In this 
scenario we assume the simplest case where the requirements from the agent can be 
directly compared by the TPM (e.g. requirements are expressed in the form of TPM 
measurements). In some cases, it is possible that the process of checking the 
conformance between the agent requirements and the destination agency 
configuration requires some more complex processing. In these cases, we foresee that 
the source agency will be responsible for carrying out such process. An example of 
such process is the so called semantic attestation, which provides enhanced flexibility 
to the attestation mechanism at the cost of more complex processing. 

In summary this scheme provides guarantees of the security and dependability of 
the destination agency before the agent runs on it. The scheme is simple and efficient 
and can be successfully applied to multi-hop agents. 



984 J. López, A. Maña, and A. Muñoz 

sd Agency verification before migration

A1 :Agencyag1 :Agent tpm1 :TPM tpm2 :TPM A2 :Agency

verifyMigration(A2, A2req) verifyMigration(A2, A2req)

A2conf:= remoteAttestation

true:= Fulfils(A2conf, A2rer)

migrationO K
migrationO K

migrate(ag1)

 

Fig. 1. Verification of the destination agency before migration 

3.2   Profiles and Auto-configuration 

In the approach proposed by Ghosh et al [29], profiling the behaviour of a program is 
performed through the study of the set of system calls of the program. We use the 
same idea, though with agents. The main idea is to make the profile contain a 
declaration of the task that the agent intends to perform, following an approach 
analogous to the proof-carrying code [17]. However, we propose that, additionally to 
this information, the profile contains information concerning the agencies visited 
together with the set of relevant operations executed in each agency. This information 
will be added in the profile dynamically by each agency. This is noteworthy for the 
case when an agent can contain malicious code, a code that can not be detected  
by agent execution in only one agency but a malicious code segmented and executed 
in the different agencies visited by the agent. Thus, detection needs a global 
supervision. 

Fig. 2 shows how the complete agent migration process is performed, from a 
source agency (A1) to a destination agency (A2). In this case the interaction includes 
the transmission of the agent profile and the auto-configuration of the destination 
agency. In the first step, the agent (ag1) sends a request for migration to the source 
agency (A1). As in the previous example, it is necessary to specify the destination 
agency (A2) and the configuration requirements (A2req). Then, the source agency 
sends a message requesting the verification of the destination agency to the local TPM 
(tpm1). This one will carry out a remote attestation with the remote TPM (tpm2). In 
case this attestation is successful, and the destination host configuration fulfils the 
agent requirements, the local TPM requests the public key from tpm2. This public key 
is used by the encryption service of the local TPM to encrypt the agent profile 
(ag1.profile). Then, source agency sends the encrypted profile to destination agency. 
Finally, the encrypted profile is decrypted by the TPM of the remote agency.  

At this point the destination agency verifies the agent profile with regards to its 
local policy. In case the profile is accepted, the destination agency auto-configures 
itself in order to receive and execute the agent and notifies this circumstance to the 
source agency. Finally, the agent can migrate to the destination agency. 



 A Secure and Auto-configurable Environment 985 

sd Profile-based migration and configuration

A1 :Agencyag1 :Agent tpm1 :TPM tpm2 :TPM A2 :Agency

verifyMigration(A2, A2req, ag1.profile)
verifyMigration(A2, A2req)

A2conf:= remoteAttestation

true:= Fulfils(A2conf, A2rer)

tpm2_ publicKey:= G etPublicKey()

migrationO K

encrypted_profile:= E ncrypt(ag1.profile)

NewAgentProfile(encrypted_ profile)

requestingAgentProfile := Decrypt(encrypted_profile)

true:= V erifyRequestedProfile(requestingAgentProfi le)

true:= AutoConfigure(profile)

readyT oReceive()
migrationO K

migrate(ag1)

 

Fig. 2. Auto-configuration of the destination agency based on the agent profile 

Once the fundamentals for providing a secure run environment for mobile agents 
has been described in detail, we follow with the description of their self-
configurability. As mentioned, we will use the agent profile. To better understand 
what an agent means, Fig. 3 shows an example of an agent profile in XML format. In 
this example we have structured the information of the agent in five main blocks. 
Firstly, we have the information related to general requirements of the agents, like 
amount of memory required, the type of communication, etc. Secondly, we have 
established the security requirements for the execution of the agent. In the example 
we have information like the cryptographic mechanisms used, the access to TPM, and 
the certification of the platform. Then, we have established another section with the 
platform configuration where we can indicate if the agent requires the agency to run 
in trusted mode or not. The next section contains the dynamic part of the profile. Each 
agency visited will include new information on this section. We have highlighted the 
monitoring information, as it provides interesting features to our scheme. As it can be 
seen, the final section is left open for any extension required for specific cases.  

Coming back to the monitoring, this scheme is interesting because it allows 
agencies to include information inside the agent profile, so that information could be 
used for later supervision tasks. This would be useful in the cases when an agent 
performs something suspicious but not detectable in the partial execution of an agent 
in an agency. This mechanism introduces the possibility of supervising the global 
behaviour of the agent by all agencies it passes through.  

Another interesting aspect is that the profile can be certified by the agency with the 
help of the TPM. But, moreover, the profile could include a history of all agencies the 
agent passed by, and these could certify its operation. This scheme takes advantage of 
the Trusted Computing model as well as the possibilities of rich profiling, providing a 
secure execution environment for agents. Besides, we allow a self-configuration of 
the agent execution environments (agencies) prior to its arrival to the host.  



986 J. López, A. Maña, and A. Muñoz 

<?xml version="1.0" encoding="UTF-8" ?>  
<agent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 xsi:noNamespaceSchemaLocation="D:\informacion\agentProfile.xsd"> 
 <generalReq> 
  <memoryReq>128kb</memoryReq>  
  <communication>none</communication>  
<!-- more general requirements -->  
  </generalReq> 
 <securityReq> 
  <cryptoMechanisms> 
   <cryptoMechanism> 
    <type>AsymmetricEncryption</type>  
    <algorithm>RSA</algorithm>  
    <keyLength>512</keyLength>  
   </cryptoMechanism> 
  </cryptoMechanisms> 
  <tpmAccess>Yes</tpmAccess>  
  <platformCert>Yes</platformCert>  
<!-- more security requirements --> 
 </securityReq> 

 <platformConf> 
  <trustedMode> 
   <required>Yes</required>  
   <confID>'71386cb5c2ed63f855d2533cc264bc2e'</confID>  
  </trustedMode> 
<!-- more platform configuration values --> 
 </platformConf> 
<!— dynamic part of the profile containing 
    platform-generated information --> 
 <platformInfo> 
  <monitoring> 
   <visit> 
    <host url="http://www.agentHome.org"> 
    </host> 
    <actions> 
     <!—monitored actions --> 
    </actions>  
   </visit>  
  </monitoring> 
<!-- more platform-generated information --> 
 </platformInfo> 
 <extensions> 
<!—for scenario-specific information --> 
 </extensions> 
</agent>  

Fig. 3. Example of agent profile 

4   Conclusions and Ongoing Work 

Our main motivation is to provide a secure and auto-configurable environment for 
mobile agents in ubiquitous computing scenarios. In order to achieve this goal we 
have based our approach on two main building blocks: trusted platforms and profiles. 

We have described how these two elements contribute to the proposed solution and 
have discussed some alternatives. We have also reviewed the advantages of the 
proposed approach and have shown how additional features are enabled by the use of 
this scheme. Among these additional features we must highlight the enhanced support 
for supra-agency monitoring. The importance of this feature is that it enables the 
detection of attacks that can not be identified by analyzing the actions performed in 
just one agency. Additionally we have illustrated the migration processes. 

We are currently working on the implementation of agencies over platforms 
containing TPMs. We are also working on the FIPA-OS specifications in order to 
accommodate the new functionalities required by our system (e.g. access to the TPM). 

Finally, we are also working on complementary protection mechanisms for the 
agents that do not involve the use of TCG technology [30]. 

References 

1. Trusted Computing Group: TCG Specifications. 2005. Available online at  
https://www.trustedcomputinggroup.org/specs/ 

2. Resnick, P. and Varian, H., Eds.: Communications of the ACM: Special Issue on 
Recommender Systems 46. 1997. 

3. Riecken, D., Ed.: Commun. ACM: Special Issue on Personalization 43. 2000. 
4. Maybury, M., Ed.: Commun. ACM: Special Issue on News on Demand 43. 2000. 
5. Maybury, M. and Brusilovsky, P., Eds.: Commun. ACM: The Adaptive Web 45. 2002. 
6. Bygrave, L.: Electronic Agents and Privacy: A Cyberspace Odyssey 2001, Intl. Journal of 

Law and Information Technology, vol 9, no 3, p 280, Oxford University Press, 2001. 
7. Pearson, S.: Trusted Agents that Enhance User Privacy by Self-Profiling. Proceedings of 

the AAMAS Workshop (Special track on privacy). 2002. 
8. W3C: Resource Description Framework (RDF): Concepts and Abstract Syntax. 2004. 



 A Secure and Auto-configurable Environment 987 

9. W3C: CC/PP: Structure and Vocabularies 1.0 January 2004. Available online at  
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html 

10. Wireless Application Protocol Forum: Wireless Application Group User Agent Profile 
Specification. Nov. 1999. 

11. Foundation for Intelligent Physical Agents: FIPA Device Ontology Specification, 
December 2002. Available online www.fipa.org. 

12. Chi, E.H.: Transient User Profiling. Proceedings of the workshop on User Profiling. 2004. 
13. Sparacino, F.: Sto(ry)chastics: a Bayesian Network Architecture for User Modelling and 

Computational Storytelling for Interactive Spaces. Proceedings of the Fifth International 
Conference on Ubiquitous Computing. 2003. 

14. Berkovits S, Guttman J, Swarup V.: Authentication for Mobile Agents. In Mobile Agents 
and Security volume 1419, pages 114-136. Springer-Verlag. 1998. 

15. Maña, A.: Protección de Software Basada en Tarjetas Inteligentes. PhD Thesis. University 
of Málaga. 2003. 

16. Hachez, G.: A Comparative Study of Software Protection Tools Suited for E-Commerce 
with Contributions to Software Watermarking and Smart Cards. PhD Thesis. Universite 
Catholique de Louvain. 2003. 

17. Necula G.: Proof-Carrying Code. Proceedings of 24th Annual Symposium on Principles of 
Programming Languages. 1997. 

18. Gunter Carl A., Homeier Peter, Nettles Scott.: Infrastructure for Proof-Referencing Code. 
Proceedings of the Workshop on Foundations of Secure Mobile Code. March 1997. 

19. Yee, Bennet S.: A Sanctuary for Mobile Agents. Secure Internet Programming. 1999. 
20. Schaumüller-Bichl1, I., Piller, E.: A Method of Software Protection Based on the Use of 

Smart Cards and Cryptographic Techniques. Proceedings of Eurocrypt’84. Springer-
Verlag. LNCS 0209, pp. 446-454. 1984. 

21. Stern, J. P., Hachez, G., Koeune, F., Quisquater, J. J.: Robust Object Watermarking: 
Application to Code. Proceedings of Info Hiding '99, Springer-Verlag. LNCS 1768, pp. 
368-378. 1999. 

22. Collberg, C., Thomborson, C.: Watermarking, Tamper-Proofing, and Obfuscation - Tools 
for Software Protection. University of Auckland Technical Report #170. 2000.  

23. Wayner, P.: Dissapearing Cryptography. Information Hiding, Stenography and 
Watermarking. Morgan Kauffman. 2002. 

24. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On 
the (Im)possibility of Obfuscating Programs. Proceedings of CRYPTO `01. Springer-
Verlag. LNCS 2139. pp. 1-18. 2001. 

25. Goldreich, O.: Towards a theory of software protection. Proceedings of the 19th Ann. 
ACM Symposium on Theory of Computing, pp. 182-194. 1987. 

26. Sander, T., Tschudin C.F.: On Software Protection via Function Hiding. Proceedings of 
Information Hiding ’98. Springer-Verlag. LNCS 1525. pp 111-123. 1998. 

27. Pearson, S., Balacheff, B., Chen, L., Plaquin, D., Proudler. G.: Trusted Computer 
Platforms. Prentice Hall. 2003. 

28. Arbaugh W., Farber D., Smith, J.: A Secure and Reliable Bootstrap Architecture. 
Proceedings of the 1997 IEEE Symposium on Security and Privacy, pp 65-71. 1997. 

29. Ghosh, A., Schwartbard, A., Schatz M.: Learning program behavior profiles for intrusion 
detection. Proceedings of the Workshop on Intrusion Detection and Network Monitoring, 
Usenix. 1999. 

30. Maña, A., Muñoz, A.: Mutual Protection for Multiagent Systems. Proceedings of the Third 
International Workshop on Safety and Security in Multiagent Systems (SASEMAS '06). 
2006. 


	Introduction
	Background and Related Work
	Security in Agent-Based Systems

	Secure Execution of Agents in Ubiquitous Computing Scenarios
	Trusted Computing Support
	Profiles and Auto-configuration

	Conclusions and Ongoing Work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




